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1. Introduction

Let V be an n-dimensional vector space over a field k. Let d ≥ 3 be a positive 
integer. A d-linear form on V is a multilinear mapping Θ : V d = V × · · · × V →
k and is denoted by (V, Θ) or Θ for short. Take a basis e1, e2, . . . , en of V and set 
ai1i2···id = Θ(ei1 , ei2 , . . . , eid). The resulting tensor A =

(
ai1i2···id

)
1≤i1,i2,...,id≤n

is called 
the associated tensor of (V, Θ) under the basis e1, e2, . . . , en. A fundamental problem 
in invariant theory and multilinear algebra is finding canonical forms for multilinear 
forms under base change, or equivalently, canonical forms of tensors under congruence 
by invertible matrices.

Unlike bilinear forms, it seems hopeless to find a complete set of representatives for 
d-linear forms, see e.g. [3,8]. One of our main concerns is direct sum decompositions of 
multilinear forms, that is to find whether there exist nonzero subspaces V1, V2, . . . , Vm

of (V, Θ) such that V = V1 ⊕ V2 ⊕ · · · ⊕ Vm and Θ(v1, . . . , vd) = 0 as long as the vi’s, all 
taken from V1 ∪ V2 ∪ · · · ∪ Vm, are not in the same Vj for some j. In terms of tensors, 
this is equivalent to finding an invertible matrix P such that the congruent tensor AP d

is block diagonal. This is a natural problem, as direct sum decompositions may provide 
dimension reduction for multilinear forms.

In [10,11], we studied direct sum decompositions of symmetric multilinear forms via 
Harrison’s theory of centers [9]. The authors showed that the problem can be boiled down 
to some standard tasks of linear algebra, specifically the computations of eigenvalues and 
eigenvectors. The main aim of the present paper is to extend [10,11] to the situation of 
general multilinear forms.

We generalize the key notion of centers as follows.

Definition 1.1. Given a d-linear form (V, Θ), set

Z(V,Θ): =

⎧⎪⎨
⎪⎩φ ∈ End(V )

∣∣∣∣∣∣∣
Θ(v1, . . . , φ(vi), . . . , vj , . . . vd)

= Θ(v1, . . . , vi, . . . , φ(vj), . . . , vd),
1 ≤ i, j ≤ d, for all v1, . . . , vd ∈ V

⎫⎪⎬
⎪⎭ (1.1)

and call it the center of (V, Θ).

Elements of centers for multilinear forms were also defined and applied to direct sum 
decomposition in [4], where they were called self-adjoint linear mappings. However, the 
algebraic structure of all central, or self-adjoint, elements were not considered therein.

We observe that the centers of multilinear forms enjoy the same properties as those 
of symmetric multilinear forms, or equivalently homogeneous polynomials, cf. [9–11].

Theorem 1.2. Suppose (V, Θ) is a nondegenerate d-linear form. Then

(1) The center Z(V, Θ) is a commutative algebra.
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(2) There is a one-to-one correspondence between direct sum decompositions of (V, Θ)
and complete sets of orthogonal idempotents of Z(V, Θ).

(3) The decomposition of (V, Θ) into a direct sum of indecomposable d-linear forms is 
unique up to permutation of indecomposable summands.

As a consequence, we have a simple algorithm for direct sum decompositions of arbi-
trary multilinear forms which is equivalent to the classical eigenvalue problem of matrices, 
see [10, Algorithm 3.12].

Let Td,n be the set of all d-linear forms on an n-dimensional linear k-space. If a 
multilinear form is not a direct sum, then we say it is indecomposable. It is clear by 
Theorem 1.2 that (V, Θ) ∈ Td,n is indecomposable if and only if Z(V, Θ) is a local algebra. 
A multilinear form is called absolutely indecomposable, if it remains indecomposable 
under any extension of the ground field. In particular, if (V, Θ) is central, i.e., Z(V, Θ) ∼=
k, then (V, Θ) is absolutely indecomposable. It was already noticed in [4, Remark 10]
that multilinear forms are more likely indecomposable. We confirm this with a help of 
the center theory. In fact, we show in terms of elementary algebraic geometry that almost 
all multilinear forms are central, hence are absolutely indecomposable.

Theorem 1.3. The set of all central d-linear forms is Zariski open and dense in Td,n.

We also apply the theory of centers to symmetric equivalence of multilinear forms. 
This notion was introduced and studied by Belitskii and Sergeichuk in [4]. Let (U, Δ)
and (V, Θ) be two d-linear forms. If there exist linear bijections φ1, . . . , φd : U → V such 
that

Δ(u1, . . . , ud) = Θ(φσ1(u1), . . . , φσd
(ud))

for all u1, . . . , ud ∈ U and each reordering σ1, . . . , σd of 1, . . . , d, then (U, Δ) and (V, Θ)
are called symmetrically equivalent, denoted by (U, Δ) 	s (V, Θ). Further, if φ1 = · · · =
φd, then (U, Δ) and (V, Θ) are called isomorphic, denoted by (U, Δ) ∼= (V, Θ). Isomorphic 
multilinear forms are obviously symmetrically equivalent. The converse is not true in 
general, however, we have

Theorem 1.4. Let (U, Δ) and (V, Θ) be two d-linear forms.

(1) Suppose Δ 	s Θ. Let Δ = Δ0 ⊕Δ1 ⊕· · ·⊕Δr (resp. Θ = Θ0 ⊕Θ1 ⊕· · ·⊕Θs) be the 
decomposition of Δ (resp. Θ) as the direct sum of a zero form and indecomposable 
d-linear forms where Δ0 and Θ0 are zero forms and the other Δi’s and Θi’s are 
indecomposable. Then we have r = s and Δi 	s Θi for each i after suitable reordering 
of Θi’s.

(2) Suppose the characteristic of k is zero or coprime to d. Assume further that Δ and 
Θ are absolutely indecomposable. Then Δ 	s Θ if and only if Δ ∼= aΘ for some 
nonzero a ∈ k.
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(3) Suppose k is algebraically closed and its characteristic is zero or coprime to d. Then 
Δ 	s Θ if and only if Δ ∼= Θ.

This generalizes the related results of [4], and the arguments are considerably simpli-
fied with the help of centers. Moreover, one can define centers of multilinear maps [2] and 
obtain results similar to Theorems 1.2, 1.3 and 1.4. Interestingly enough, the previous 
results of symmetric equivalence of multilinear forms can be applied to provide a simple 
linear algebraic proof for a well known Torelli type result of Donagi [6, Proposition 1.1]. 
To the best of our knowledge, the previously known proofs are more or less analytic and 
sophisticated.

Theorem 1.5. Suppose the field k is algebraically closed and its characteristic is 0 or 
greater than d. If f and g are two homogeneous polynomials of degree d with the same 
Jacobian ideal, then they are related by an invertible linear transformation.

Throughout, we assume that d is an integer greater than 2, k is a field of character-
istic 0 or greater than d, unless otherwise stated. The results are presented in terms of 
multilinear forms. We leave the equivalent version for tensors to the interested reader. 
Theorems 1.2 and 1.3 are proved in Section 2, Theorem 1.4 is proved in Section 3, and 
Theorem 1.5 is proved in Section 4.

2. Centers and direct sum decompositions of multilinear forms

In this section, we consider the center algebras of multilinear forms with applications 
to direct sum decompositions. First of all, we recall some concepts.

Definition 2.1. Let (V, Θ) be a d-linear form. If there exist nonzero subspaces V1, . . . , Vs

(s ≥ 2) of (V, Θ) such that V = V1 ⊕ · · · ⊕ Vs and Θ(v1, . . . , vd) = 0 for all v1, . . . , vd ∈⋃s
i=1 Vi unless all the vi’s are in the same Vk for some k, then Θ is called the (inner) 

direct sum of Θ1, . . . , Θs, where Θi = Θ|Vi
is the restriction of Θ to Vi for 1 ≤ i ≤ s and 

we denote it by (V, Θ) = (V1, Θ1) ⊕ · · · ⊕ (Vs, Θs). We call (V, Θ) decomposable if it is a 
direct sum. Otherwise, we call (V, Θ) indecomposable.

Similar to the symmetric case [9], there is no harm in assuming that the d-linear 
form (V, Θ) is nondegenerate, that is, u = 0 is the only solution to the following linear 
equations

Θ(u, v1, . . . , vd−1) = Θ(v1, u, . . . , vd−1) = · · · = Θ(v1, . . . , vd−1, u) = 0 (2.1)

for all v1, . . . , vd−1 ∈ V . For an arbitrary d-linear form (V, Θ), let V0 be the solution 
space of the previous equations (2.1) and take a subspace V1 of V such that V = V0⊕V1, 
then (V, Θ) = (V0, Θ0) ⊕ (V1, Θ1). It is immediate that a degenerate d-linear form is 
decomposable. In particular, (V0, Θ0) is a zero form and (V1, Θ1) is nondegenerate. Note 
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moreover that V0 is uniquely determined by Θ, and (V1, Θ1) is uniquely determined by 
Θ up to isomorphism, see also [4, Theorem 9].

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. (1) Let us show that Z(V, Θ) is a commutative subalgebra of 
End(V ). It is obvious that Z(V, Θ) is closed under linear combinations. Choose two 
arbitrary φ, ψ ∈ Z(V, Θ) and we want to show φ ◦ ψ ∈ Z(V, Θ). According to the 
definition of centers, for all v1, . . . , vd ∈ V we have

Θ(v1, . . . , φ ◦ ψ(vi), . . . , vj , . . . vd) = Θ(v1, . . . , ψ(vi), . . . , vj , . . . , φ(vd))

= Θ(v1, . . . , vi, . . . , ψ(vj), . . . , φ(vd))

= Θ(v1, . . . , vi, . . . , φ ◦ ψ(vj), . . . , vd).

Hence we have φ ◦ ψ ∈ Z(V, Θ). Similarly we show the commutativity of Z(V, Θ) as 
follows.

Θ(v1, . . . , φ ◦ ψ(vi), . . . , vj , . . . vd) = Θ(v1, . . . , ψ(vi), . . . , φ(vj), . . . vd)

= Θ(v1, . . . , vi, . . . , φ(vj), . . . , ψ(vd))

= Θ(v1, . . . , φ(vi), . . . , vj , . . . , ψ(vd))

= Θ(v1, . . . , ψ ◦ φ(vi), . . . , vj , . . . vd).

We conclude that Θ(v1, . . . , [φ ◦ ψ − ψ ◦ φ](vi), . . . , vj , . . . vd) = 0 for all v1, . . . , vd ∈ V . 
As (V, Θ) is nondegenerate, it follows that φ ◦ ψ − ψ ◦ φ = 0, that is, φ ◦ ψ = ψ ◦ φ.

(2) Suppose (V, Θ) = (V1, Θ1) ⊕ · · · ⊕ (Vs, Θs) is a direct sum decomposition. For 
1 ≤ i ≤ s, let ei : V � Vi ↪→ V be the composition of the canonical projection V � Vi

and the embedding Vi ↪→ V . Then it is obvious that e2
i = ei, eiej = 0 whenever i �= j, 

and by definition it is easy to verify that each ei ∈ Z(V, Θ). In other words, e1, . . . , es
are a complete set of orthogonal idempotents of Z(V, Θ).

Conversely, suppose e1, . . . , es are a complete set of orthogonal idempotents of 
Z(V, Θ). Let Vi = eiV and Θi = Θ|Vi

. Then it is not hard to verify that (V1, Θ1) ⊕
· · · ⊕ (Vs, Θs) is a direct sum decomposition of (V, Θ). Indeed, assume v1, . . . , vd are 
taken from the subspaces Vi’s and vj ∈ Vj , vk ∈ Vk with j < k, then

Θ(v1, . . . , vj , . . . , vk, . . . , vd)

= Θ(v1, . . . , ejvj , . . . , ekvk, . . . , vd)

= Θ(v1, . . . , vj , . . . , ejekvk, . . . , vd)

= 0.

(3) It suffices to prove that Z(V, Θ) has a unique complete set of primitive orthogonal 
idempotents disregarding their order thanks to (2). Suppose 1 = e1+· · ·+es = f1+· · ·+ft
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where all ei’s and fj ’s are primitive orthogonal idempotents. Then for any fixed i, ei =
ei(f1+· · ·+ft) = eif1+· · ·+eift. Since (eifj)2 = e2

i f
2
j = eifj and ei is primitive, ei = eifj

for some certain j. Similarly, fj = fjek for some certain k. We claim that i = k, and 
thus ei = eifj = fjei = fj . Otherwise, if i �= k, then ei = eifj = eifjek = eiekfj = 0. 
This is absurd. Then we are done. �
Remarks 2.2. Keep the assumption that (V, Θ) is a nondegenerate d-linear form.

(1) (V, Θ) is indecomposable if and only if Z(V, Θ) is a local algebra.
(2) The uniqueness of direct sum decomposition of multilinear forms were dealt with by 

other approaches in [9, Proposition 2.3] (the symmetric case) and [4, Theorem 9]. 
The treatment via centers seems much more convenient.

(3) The algorithm of direct sum decomposition of symmetric multilinear forms proposed 
by the authors [11, Algorithm 3.12] can be extended verbatim to the present situa-
tion.

Now we give some examples of the centers of multilinear forms. First of all, it is conve-
nient to turn (1.1) in the definition of centers into explicit linear equations. Assume that 
V is an n-dimensional k-space with a basis e1, . . . , en. Let A =

(
ai1i2···id

)
1≤i1,i2,...,id≤n

be the associated tensor of (V, Θ) under the basis e1, e2, . . . , en. Then we have

Z(V,Θ) ∼= {X ∈ kn×n | XTAi1···ik···il···id = Ai1···ik···il···idX, 1 ≤ i1, . . . , id ≤ n}, (2.2)

where Ai1···ik···il···id denotes the n × n matrix 
(
ai1···ik−1,i,ik+1···il−1,j,il+1···id

)
1≤i,j≤n

.

Example 2.3. Let V be the 3-dimensional Euclidean space and consider the scalar 
triple product. Given arbitrary three vectors x = (x1, x2, x3), y = (y1, y2, y3) and 
z = (z1, z2, z3), we define a 3-linear form Θ(x, y, z) = x1y1z1 + x2y2z2 + x3y3z3. 
Let A =

(
aijk

)
1≤i,j,k≤3 be the associated tensor of (V, Θ) under the canonical basis 

e1, e2, e3 of R3. Then aiii = 1 for all i and aijk = 0 if i, j, k are not identical. Suppose 
X =

(
xij

)
3×3 ∈ Z(V, Θ). Note that A is symmetric, that is invariant under permutation 

of indices, so it is enough to consider the equations XTAii2i3 = Aii2i3X for i = 1, 2, 3
by (2.2). As Aii2i3 has all 0 entries but (i, i)-entry 1, by easy computations one has 
xij = 0 whenever j �= i. Hence the center Z(V, Θ) consists of all the diagonal matrices 
and we have Z(V, Θ) ∼= R3. It follows by Theorem 1.2 that (V, Θ) is a direct sum of 3
one-dimensional 3-linear forms. Indeed, let Vi be the space spanned by ei and Θi the 
restriction of Θ to Vi, then it is clear that (V, Θ) = (V1, Θ1) ⊕ (V2, Θ2) ⊕ (V3, Θ3).

Example 2.4. Consider the space V = kn of all the n-dimensional column vectors. 
Given arbitrary n vectors v1, . . . , vn, we define an n-linear form Θ(v1, . . . , vn) = detM , 
where M is the n × n matrix with columns v1, . . . , vn. The associated tensor A =(
ai1···in

)
of Θ with respect to the canonical basis of V satisfies ai1···in = 0
1≤i1,...,in≤n
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unless i1, . . . , in is a permutation of 1, . . . , n, in which case ai1···in is the sign of the 

permutation 

(
1 · · · n

i1 · · · in

)
. For a permutation i1, . . . , in, suppose ik = i and il = j. 

Then the matrix Ai1···ik···il···in is anti-symmetric and has only two nonzero entries with 
the value ±1 at (i, j)-entry and ∓1 at (j, i)-entry. Let X =

(
xkl

)
n×n

∈ Z(V, Θ) and 
solve the matrix equation XTAi1···ik···il···in = Ai1···ik···il···inX. One has easily xii = xjj , 
and xis = xjt = 0 whenever s �= i, t �= j. Running over all the possible pairs (i, j)’s, we 
show that the center Z(V, Θ) consists of all the scalar matrices and thus Z(V, Θ) ∼= k. 
Therefore, the multilinear form (V, Θ) is indecomposable by Remarks 2.2.

Example 2.5. Let V be the algebra of n × n-matrices. For any d matrices M1, . . . , Md, 
we define Θ(M1, . . . , Md) = tr(M1 · · ·Md) where tr is the trace map of matrices. Let 
Eij ∈ V be the matrix unit which has a 1 in the (i, j) position as its only nonzero entry. 
Let A =

(
ai1j1···idjd

)
1≤i1,...,id,j1,...,jd≤n

be the associated tensor of Θ under the basis 
{Eij , 1 ≤ i, j ≤ n}. Then we have ai1j1···idjd = 1 when jd = i1, jk = ik+1, 1 ≤ k ≤ d − 1
and ai1j1···idjd = 0 otherwise. Similar to the previous example, by direct computation 
one can show that the center Z(V, Θ) ∼= k.

Example 2.6. Take any associative algebra A with unit and any linear function φ on 
A. Consider the d-linear form Θ(a1, . . . , ad) = φ(a1 · · · ad). Let Z be the usual center 
of A. For each a ∈ A, let la be the endomorphism of A sending each x ∈ A to ax. If 
a ∈ Z, then it is easy to see that la ∈ Z(Θ). Therefore we have an embedding from Z
into Z(A, Θ). In the previous example, these two centers are isomorphic to each other. 
However, in general the embedding is not surjective. For example, let A = k[t]/(t2) and 
φ(x + yt) = x for all x, y ∈ k, where t denotes the congruence class of t. Let Ψ be the 
linear endomorphism of A such that Ψ(x + yt) = yt. As φ(Ψ(x + yt)(z +wt)) = 0 for all 
w, x, y, z ∈ k, we conclude that Ψ ∈ Z(A, Θ). However Ψ is not any la with a ∈ A. This 
means that the center of multilinear forms is a nontrivial extension of the usual center 
of algebras.

In the rest of this section, we consider the algebraic structure of the center of a general 
d-linear form. This may provide important structural information for d-linear forms. Our 
chief concern is whether a general d-linear form is decomposable. It was already noticed in 
[4, Remark 10] that multilinear forms are more likely indecomposable. This is confirmed 
in terms of elementary algebraic geometry with a help of the center theory. We will show 
that almost all multilinear forms have trivial center, namely the center is isomorphic to 
the ground field. Such multilinear forms are called central. Clearly, a central multilinear 
form is indecomposable by item (1) of Remarks 2.2. The relevant result for symmetric 
multilinear forms was proved in [11, Theorem 3.2], where the same idea can be extended 
to the present situation.

First we construct some examples of central multilinear forms in general degree and 
dimension. This is necessary for the argument in the proof of Theorem 1.3.
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Example 2.7. We construct a d-linear form with trivial center for each d ≥ 3 and n ≥ 2.

If n = 2, let (aij)2×2 =
(

1 −1
1 0

)
. Let Θ be the d-linear form such that ai1i2i3···id =

ai1i2 for all 1 ≤ i1, . . . , id ≤ 2. An easy calculation shows that Z(V, Θ) ∼= k.
If n ≥ 3, let p1, . . . , pn, q1 . . . , qn be 2n nonzero elements of k such that pj

pi
�= qj

qi

whenever i �= j. Let A1 =
(
a
(1)
ij

)
(resp. A2 =

(
a
(2)
ij

)
) be the diagonal n × n matrix with 

a
(1)
ii = pi (resp. a(2)

ii = qi) for 1 ≤ i ≤ n. Let A3 = (a(3)
ij ) be the matrix with a(3)

ij = 1
for 1 ≤ i, j ≤ n. Let Θ be the d-linear form such that a1i2i3···id = a

(1)
i2i3

, a2i2i3···id =
a
(2)
i2i3

, a3i2i3···id = a
(3)
i2i3

, aii2i3···id = 0 for 4 ≤ i ≤ n, 1 ≤ i2, i3, . . . , id ≤ n. Suppose 
X =

(
xij

)
n×n

∈ Z(V, Θ), then we have XTAi = AiX for i = 1, 2, 3. Consequently, we 
have pixij = pjxji and qixij = qjxji for all 1 ≤ i, j ≤ n. As pj

pi
�= qj

qi
whenever i �= j, 

we conclude that X must be a diagonal matrix. Moreover, X must be a multiple of the 
identity matrix since XTA3 = A3X. Therefore, we have Z(V, Θ) ∼= k.

Proof of Theorem 1.3. Let C be the set of all central d-linear forms. Clearly, C is not 
empty by Example 2.7. See also [11] for many other examples of central d-linear forms 
which are symmetric. The center of (V, Θ) is the solution space to a system of linear 
equations on xij ’s: XTAi1···ik···il···id = Ai1···ik···il···idX for all possible index i1 · · · id, 
where we use the same notations as in Equation (2.2). The d-linear form (V, Θ) is central 
if and only if the rank of the coefficient matrix, denoted by B, of the linear system (2.2)
is equal to n2 − 1. Hence C is the union of all the principal open sets defined by the 
(n2 − 1)-minors of B regarding all ai1···id ’s as indeterminates. Consequently, C is a 
nonempty Zariski open set of Td,n and so is dense. �
3. Symmetric equivalence of multilinear forms

This section is motivated by [4]. We apply the theory of centers to investigate sym-
metric equivalence of multilinear forms. First, we recall some notions.

Definition 3.1. Let (U, Δ) and (V, Θ) be two d-linear forms.

(1) (U, Δ) and (V, Θ) are called symmetrically equivalent, denoted by (U, Δ) 	s (V, Θ), 
if there exist linear bijections φ1, . . . , φd : U → V such that

Δ(u1, . . . , ud) = Θ(φσ1(u1), . . . , φσd
(ud))

for all u1, . . . , ud ∈ U and each reordering σ1, . . . , σd of 1, . . . , d.
(2) (U, Δ) and (V, Θ) are called isomorphic, denoted by (U, Δ) ∼= (V, Θ), if there exists 

a linear bijection φ : U → V such that

Δ(u1, . . . , ud) = Θ(φ(u1), . . . , φ(ud))
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for all u1, . . . , ud ∈ U .
(3) The (outer) direct sum of (U, Δ) and (V, Θ) is the d-linear form Δ ⊕Θ : (U⊕V )d → k

defined by

(Δ ⊕ Θ)(u1 + v1, . . . , ud + vd) = Δ(u1, . . . , ud) + Θ(v1, . . . , vd)

for all u1, . . . , ud ∈ U and v1, . . . , vd ∈ V .

Remark 3.2. Isomorphic forms are called congruent in [4]. We leave the terminology con-
gruence for the associated tensors of multilinear forms in consideration. If two forms are 
isomorphic, then evidently they are symmetrically equivalent. The converse is not true 
in general. For example, let (V, Θ) be the 2d-linear form over the field R of real numbers 
defined by Θ(ei, ei, . . . , ei) = 1, 1 ≤ i ≤ n, and Θ(ei1 , ei2 , . . . , ei2d) = 0 otherwise. It is 
clear that (V, Θ) is not isomorphic to (V, −Θ), as the former is positive definite, while the 
latter is negative definite. However, it is easy to see that the bijections − Id, Id, . . . , Id
make a symmetric equivalence between them.

Now we investigate symmetric equivalence of d-linear forms via their centers.

Proposition 3.3. Suppose (U, Δ) and (V, Θ) are nondegenerate d-linear forms. If 
(U, Δ) 	s (V, Θ), then Z(U, Δ) is isomorphic to Z(V, Θ) as algebras.

Proof. Let φ1, . . . , φd : U → V be the linear bijections such that

Δ(u1, . . . , ud) = Θ(φσ1(u1), . . . , φσd
(ud))

for all u1, . . . , ud ∈ U and each reordering σ1, . . . , σd of 1, . . . , d. In particular, for fixed 
bijections φk and φl we have

Δ(u1, . . . , φ
−1
k φl(ui), . . . , uj , . . . , ud)

= Θ(φσ1(u1), . . . , φk(φ−1
k φl(ui)), . . . , φl(uj), . . . , φσd

(ud)) (φσi
= φk, φσj

= φl)

= Θ(φσ1(u1), . . . , φl(ui), . . . , φl(uj), . . . , φσd
(ud))

= Θ(φσ1(u1), . . . , φl(ui), . . . , φk(φ−1
k φl(uj)), . . . , φσd

(ud))

= Δ(u1, . . . , ui, . . . , φ
−1
k φl(uj), . . . , ud).

Therefore we show that φ−1
k φl ∈ Z(U, Δ) for all possible pairs (k, l). Similarly, we can 

show that φkφ
−1
l ∈ Z(V, Θ) for all possible pairs (k, l).

As Z(V, Θ) is commutative, for any φ ∈ Z(U, Δ) we have

φkφφ
−1
k ◦ (φlφφ

−1
l )−1 = φkφ(φ−1

k φl)φ−1φ−1
l = φkφφ

−1(φ−1
k φl)φ−1

l = IdV ,
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where IdV is the identity map on V . Therefore, φkφφ
−1
k = φlφφ

−1
l holds for all possible 

pairs (k, l).
Since

Θ(v1, . . . , φkφφ
−1
k (vi), . . . , vj , . . . , vd)

= Δ(φ−1
σ1

(v1), . . . , φ−1
k φkφφ

−1
k (vi), . . . , φ−1

l (vj), . . . , φ−1
σd

(vd)) (φ−1
σi

= φ−1
k , φ−1

σj
= φ−1

l )

= Δ(φ−1
σ1

(v1), . . . , φφ−1
k (vi), . . . , φ−1

l (vj), . . . , φ−1
σd

(vd))

= Δ(φ−1
σ1

(v1), . . . , φ−1
k (vi), . . . , φφ−1

l (vj), . . . , φ−1
σd

(vd))

= Θ(v1, . . . , vi, . . . , φlφφ
−1
l (vj), . . . , vd)

= Θ(v1, . . . , vi, . . . , φkφφ
−1
k (vj), . . . , vd),

we conclude φkφφ
−1
k ∈ Z(V, Θ) for all 1 ≤ k ≤ d. Finally, we can construct the isomor-

phism Ψ : Z(U, Δ) → Z(V, Θ) by Ψ(φ) = φ1φφ
−1
1 . �

Before proving the main results on symmetric equivalence of multilinear forms, we 
need some technical preparations particularly in commutative algebra, and see e.g. 
[1,7]. A d-linear form (V, Θ) over k is called absolutely indecomposable if it remains 
indecomposable after any field extension of k. A central from is obviously absolutely 
indecomposable.

Lemma 3.4. Suppose the characteristic of k is zero or coprime to d. Let A be a commuta-
tive finite dimensional local k-algebra with maximal ideal m. Let K = A/m be its residue 
field. Then we have A×/(A×)d ∼= K×/(K×)d, where A× (resp. K×) is the group of units 
of A (resp. K). Moreover, if K/k is purely inseparable, then K×/(K×)d ∼= k×/(k×)d.

Proof. As A is local, we have an exact sequence 1 1 + m A× K× 1 . 
After tensoring with Z/dZ, we obtain the following exact sequence

1 + m/(1 + m)d A×/(A×)d K×/(K×)d 1 .

Since the characteristic of k is zero or coprime to d, for each a ∈ 1 + m the equation 
Xd − a = 0 always has a solution in A by Hensel’s Lemma [7, Theorem 7.3]. Therefore 
each element of 1 + m is a d-th power, and we have A×/(A×)d ∼= (K)×/(K×)d.

Suppose K/k is purely inseparable. Then either K = k, or the characteristic of k is a 
prime, see e.g. [12, §6 of Chap. V]. Obviously, it suffices to consider the latter case. The 
canonical morphism k → A → K induces the map φ : k×/(k×)d → K×/(K×)d. First, 
we show that φ is surjective. Let p = chark, then for each a ∈ K, there exists certain pn

such that b = ap
n ∈ k as K/k is purely separable. As (p, d) = 1, there exist two integers 

α, β such that pnα + dβ = 1. Therefore, a = ap
nα+dβ = bαadβ ∈ k×(K×)d and φ is 

surjective. On the other side, if there exists an element c ∈ k such that c = ud for some 
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u ∈ K, then u is a root of the separable polynomial T d − c and k(u)/k is a separable 
subextension of K/k. However, as K/k is purely inseparable, this forces k(u) = k, that 
is, u ∈ k. Thus, we have shown that φ is an isomorphism and the proof is completed. �
Proposition 3.5. A d-linear form (V, Θ) is absolutely indecomposable if and only if 
Z(V, Θ) is local and its residue field is purely inseparable over k.

Proof. A form Θ is absolutely indecomposable if and only if Z(V, Θ) ⊗ k′ is local for 
any field extension k′/k by Remark 2.2. Let m be the maximal ideal of Z(V, Θ) and 
K = Z(V, Θ)/m. As m is nilpotent, Z(V, Θ) ⊗ k′ is local if and only if K ⊗ k′ is local. 
Therefore, it is enough to show that K/k is purely inseparable if and only if K ⊗ k′ is 
local for any field extension k′/k.

If K/k is purely inseparable, then K = k and the claim is obvious, or p = char(k) > 0
and some p power of any element of K ⊗ k′ belongs to k ⊗ k′ = k′. In the latter case, 
the element of K ⊗ k′ is either nilpotent or invertible, consequently K ⊗ k′ is local. On 
the other side, if K/k is not purely inseparable, then there exists a maximal separable 
subextension M/k of degree r > 1. Let kalg be the algebraic closure of k, and we have 
K ⊗kalg ∼= K ⊗M (M ⊗k kalg) ∼= (K ⊗M kalg)r, which clearly is not local. Therefore we 
finish the proof. �
Proof of Theorem 1.4. (1) Let U0 = {u ∈ U | Θ(u, v1, . . . , vd−1) = Θ(v1, u, . . . , vd−1) =
· · · = Θ(v1, . . . , vd−1, u) = 0, for all v1, . . . , vd−1 ∈ U}. Let U be the quotient space 
U/U0 and define the induced d-linear form Δ : U × · · · × U → k by Δ(u1, . . . , un) =
Δ(u1, . . . , ud), where ui ∈ U is a lifting of ui for each 1 ≤ i ≤ n. Then Δ is nondegenerate 
by construction. Moreover, it is easy to verify that (U, Δ) ∼= (U0, 0) ⊕ (U, Δ). Similarly, 
we construct V0, (V = V/V0, Θ) and have (V, Θ) ∼= (V0, 0) ⊕ (V , Θ).

Let φ1, . . . , φd : U → V be the linear bijections that define (U, Δ) 	s (V, Θ). Then 
φi(U0) ⊂ V0 and φ−1

i (V0) ⊂ U0 for each 1 ≤ i ≤ d by their definitions. Thus φi induces 
linear bijections between U0 (resp. U) and V0 (resp. V ) for each 1 ≤ i ≤ d. Clearly, (U0, 0)
and (V0, 0) are isomorphic as d-linear forms. Let φi denote the induced bijection between 
U and V , then φ1, . . . , φd give a symmetric equivalence between Δ and Θ. Therefore, we 
can reduce the proposition to the nondegenerate case, that is, we may assume Δ and Θ
are nondegenerate in the following.

By Theorem 1.2, we can uniquely decompose (U, Δ) = (U1, Δ1) ⊕ · · · ⊕ (Ur, Δr) as 
an inner direct sum of indecomposable summands such that each Δi is associated to a 
primitive idempotent ei of the center Z(U, Δ) and Ui = ei(U). As Δ 	s Θ, we have 
Z(U, Δ) ∼= Z(V, Θ) via sending each φ ∈ Z(U, Δ) to φ1φφ

−1
1 by Proposition 3.3. Again 

by Theorem 1.2, we obtain the unique direct sum decomposition (V, Θ) = (V1, Θ1) ⊕
· · · ⊕ (Vr, Θr) where Vi = φ1eiφ

−1
1 (V ) for each i. In addition, the restrictions of φk’s on 

Ui give a symmetric equivalence between Δi and Θi for each i, since φk(Ui) = φkei(U) =
φkeiφ

−1
k φk(U) = φ1eiφ

−1
1 (V ) = Vi by the proof of Proposition 3.3.
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(2) If Δ ∼= Θ, it is obvious that Δ 	s Θ. Conversely, if Δ 	s Θ, then φiφ
−1
j ∈ Z(V, Θ)

for all 1 ≤ i, j ≤ d according to the proof of Proposition 3.3. For each i, we can write 
φi = aiφ1 for some ai ∈ Z(V, Θ)×. As (V, Θ) is absolutely indecomposable, its center 
Z(V, Θ) is a commutative finite dimensional local algebra with purely inseparable residue 
field by Proposition 3.5. By Lemma 3.4, there exists an a ∈ k× such that the product 
a−1 · a1 · · · ad has a d-th root b ∈ Z(V, Θ)×. Since

Δ(u1, . . . , ud) = Θ(φ1(u1), . . . , φd(ud))

= Θ(a1φ1(u1), . . . , adφ1(ud))

= Θ(a1 · · · adφ1(u1), φ1(u2), . . . , φ1(ud))

= aΘ(a−1 · a1 · · · adφ1(u1), φ1(u2), . . . , φ1(ud))

= aΘ(bdφ1(u1), φ1(u2), . . . , φ1(ud))

= aΘ(bφ1(u1), bφ1(u2), . . . , bφ1(ud)),

we have Δ ∼= aΘ.
(3) Suppose (U, Δ) 	s (V, Θ). By item (1), we have (U, Δ) ∼= (U0, 0) ⊕ (U1, Δ1) ⊕· · ·⊕

(Ur, Δr) and (V, Θ) ∼= (V0, 0) ⊕ (V1, Θ1) ⊕ · · · ⊕ (Vr, Θr) such that all Δi’s and Θi’s are 
indecomposable and Δi 	s Θi for each i. As k is algebraically closed, Δi and Θi are 
absolutely indecomposable. Then for each i, we have Δi

∼= aiΘi for some ai ∈ k× by 
item (2). Clearly aiΘi

∼= Θi as ai has d-th roots in k, and consequently we have proved 
Δ ∼= Θ. The converse is trivial and we finish the proof. �

As direct consequences, we recover easily the related main results of [4, Theorem 2].

Corollary 3.6.

(1) Two d-linear forms over the complex field C are isomorphic if and only if they are 
symmetrically equivalent.

(2) When d is a positive odd integer, two d-linear forms over the real field R are iso-
morphic if and only if they are symmetrically equivalent.

(3) Assume d is a positive even integer. If two d-linear forms (U, Δ) and (V, Θ) over the 
real field R are symmetrically equivalent, then there exist direct sum decompositions 
Δ = Δ1 ⊕ Δ2 and Θ = Θ1 ⊕ Θ2 such that Δ1 ∼= Θ1 and Δ2 ∼= −Θ2.

Proof. Items (1) and (2) are straightforward by (2) and (3) of Theorem 1.4. For item 
(3), first we assume further that (U, Δ) and (V, Θ) are indecomposable. Let φ1, . . . , φd :
U → V be the linear bijections that define (U, Δ) 	s (V, Θ). For each i, we can write 
φi = aiφ1 for some ai ∈ Z(V, Θ)× by Proposition 3.3. As Θ is indecomposable, the 
center Z(V, Θ) is local and its residue field is R or C. If the residue field is C, then 
each ai is a d-th power in Z(V, Θ) by Lemma 3.4. The same argument as Theorem 1.4
(3) shows that Δ ∼= Θ. If the residue field is R, then ai or −ai is a d-th power, and we 
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have Δ ∼= Θ or Δ ∼= −Θ in the same manner. In general, by (1) of Theorem 1.4 we have 
(U, Δ) ∼= (U0, 0) ⊕(U1, Δ′

1) ⊕· · ·⊕(Ur, Δ′
r) and (V, Θ) ∼= (V0, 0) ⊕(V1, Θ′

1) ⊕· · ·⊕(Vr, Θ′
r)

such that all Δ′
i’s and Θ′

i’s are indecomposable and Δ′
i 	s Θ′

i for each i. By the previous 
argument on indecomposable forms, we have Δ′

i
∼= Θ′

i or Δ′
i
∼= −Θ′

i. Let Δ1 be the direct 
sum of Δ0 and all Δ′

i’s such that Δi
∼= Θ′

i, and let Δ2 be the direct sum of the rest 
Δ′

i’s. Similarly define Θ1 and Θ2. Then we have Δ = Δ1 ⊕ Δ2 and Θ = Θ1 ⊕ Θ2 with 
Δ1 ∼= Θ1 and Δ2 ∼= −Θ2. �
Example 3.7. Let A = R2 be the algebra with product (x1, y1)(x2, y2) = (x1x2, y1y2). 
Choose two R-linear forms l1 and l2 of A as: l1(x, y) = x + y and l2(x, y) = x − y. 
Then we have two associated 4-linear forms on A as Example 2.6: Θ(a1, a2, a3, a4) =
l1(a1a2a3a4) and Δ(a1, a2, a3, a4) = l2(a1a2a3a4) for all a1, a2, a3, a4 ∈ A. Let φ be the 
R-linear bijection of A such that φ(x, y) = (x, −y). Then Θ and Δ are symmetrically 
equivalent with respect to the bijections {φ, IdA, IdA, IdA}, where IdA is the identity 
map on A. However, they are not isomorphic to each other since Θ is nonnegative on 
{(a, a, a, a) : a ∈ A} but Δ may take negative values. It is easy to see that there exist the 
direct sum decompositions Θ = Θ1 ⊕Θ2 and Δ = Θ1 ⊕−Θ2, where Θ1 and Θ2 are two 
4-linear forms on the subspaces V1 = R(1, 0) and V2 = R(0, 1) respectively such that

Θ1
(
(x1, 0), (x2, 0), (x3, 0), (x4, 0)

)
= x1x2x3x4,

Θ2
(
(0, y1), (0, y2), (0, y3), (0, y4)

)
= y1y2y3y4.

4. Recovery of homogeneous polynomials from their Jacobian ideals

In this section, the ground field k is assumed to be algebraically closed and of char-
acteristic 0 or greater than d. We apply Theorem 1.4 to provide a linear algebraic proof 
for Theorem 1.5, the well known Torelli type result of Donagi [6, Proposition 1.1]. Let 
f(x1, . . . , xn) ∈ k[x1, . . . , xn] be a homogeneous polynomial of degree d. Let J(f) be its 
Jacobian ideal generated by ∂f

∂x1
, . . . , ∂f

∂xn
. The classical Torelli problem concerns about 

how to recover f from J(f).
Homogeneous polynomials are naturally associated to symmetric multilinear forms 

and symmetric tensors, see e.g. [10,11]. Write f in the symmetric way

f(x1, . . . , xn) =
∑

1≤i1,...,id≤n

ai1···idxi1 · · ·xid ,

where the ai1···id ’s are symmetric with respect to their indices. Let V be an n-dimensional 
k-space with a basis e1, . . . , en. Define the symmetric d-linear form Θ: V ×· · ·×V −→ k

by

Θ(ei1 , . . . , eid) = ai1···id , 1 ≤ i1, . . . , id ≤ n.
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The pair (V, Θ) is called the associated symmetric d-linear form of f under the basis 
e1, . . . , en. The homogeneous polynomial f and the symmetric multilinear form (V, Θ) is 
explicitly related as

f(x1, . . . , xn) = Θ
( ∑

1≤i≤n

xiei, . . . ,
∑

1≤i≤n

xiei

)
.

For each 1 ≤ i ≤ n, let Θi be the (d − 1)-linear form on V such that

Θi(v1, . . . , vd−1) = Θ(ei, v1, . . . , vd−1), for all v1, . . . , vd−1 ∈ V.

It is well known that

1
d

∂f

∂xi
= Θi

( ∑
1≤j≤n

xjej , . . . ,
∑

1≤j≤n

xjej

)
. (4.1)

In other words, Θi is associated to 1
d

∂f
∂xi

under the basis e1, . . . , en. Recall that centers of 
symmetric multilinear forms can also be equivalently defined in terms of homogeneous 
polynomials, see [9,10]. Let H be the Hessian matrix 

(
∂2f

∂xi∂xj

)
1≤i, j≤n

of f and define 

its center Z(f) as

Z(f) = {X ∈ kn×n | (HX)T = HX}. (4.2)

It is clear that Z(V, Θ) ∼= Z(f).

Example 4.1. Consider the homogeneous polynomial f(x, y, z) = x3 + y2z. By (4.2), we 
can easily compute that

Z(f) =
{⎛
⎜⎝ a 0 0

0 b 0
0 c b

⎞
⎟⎠

∣∣∣∣∣a, b, c ∈ k
}
.

Note that Z(f) has nontrivial idempotents and is not semi-simple. It follows that f is 
decomposable and singular, see [11] for more details.

In [5], Carlson and Griffiths proved a similar result of Theorem 1.5: If f is required to 
be generic, then J(f) = J(g) implies that g = λf for some λ ∈ C. The authors showed 
in [11, Theorem 3.11] that a higher degree form f is determined by its Jacobian ideal 
J(f), up to a nonzero constant factor, if and only if Z(f) ∼= k. The proof is completely 
linear algebraic, in which the center theory is the key. Here by combining the theories 
of centers and symmetric equivalence, we are able to provide a linear algebraic proof 
for Theorem 1.5. Moreover, our proof is constructive, in contrast to the proofs in the 
literature which only guarantee the existence. Two examples are included to elucidate 
the present approach after the proof of Donagi’s theorem.
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Proof of Theorem 1.5. Let Θ and Δ be the d-linear forms associated to f and g respec-
tively. Let E(f) be the vector space spanned by ∂f

∂x1
, . . . , ∂f

∂xn
which is the (d − 1)-th 

homogeneous part of J(f). If dimE(f) < n, then f is degenerate and let V0 be the 
subspace consisting of the vectors along which the partial derivative of f is zero and 
choose another subspace V1 such that V = V0 ⊕ V1. Then we have a decomposition 
(V, Θ) = (V0, 0) ⊕ (V1, Θ|V1) by Theorem 1.4. As J(f) = J(g) and thanks to Equation
(4.1), we have a similar direct sum decomposition (V, Δ) = (V0, 0) ⊕(V1, Δ|V1). Moreover 
the restrictions of f and g on V1 also have the same Jacobian ideal. Therefore, we reduce 
the theorem to the nondegenerate case.

As J(f) = J(g) and dimE(f) = n, there exists a matrix A =
(
aij

)
n×n

∈ GLn(k)
such that

( ∂g

∂x1
, . . . ,

∂g

∂xn

)
=

( ∂f

∂x1
, . . . ,

∂f

∂xn

)
A. (4.3)

Define φ ∈ End(V ) by φ(ei) =
n∑

j=1
ajiej for all 1 ≤ i ≤ n. Note by [11, Lemma 3.10] that 

A ∈ Z(f), hence φ ∈ Z(V, Θ). In addition, for all 1 ≤ i1, . . . , id ≤ n we have

Θ(φ(ei1), ei2 , . . . , eid) = Θ
( n∑
j=1

aji1ej , ei2 , . . . , eid

)

=
n∑

j=1
aji1Θj(ei2 , . . . , eid)

= Δi1(ei2 , . . . , eid) (by (4.1) & (4.3))

= Δ(ei1 , ei2 , . . . , eid).

It follows immediately that φ, Id, . . . , Id make a symmetric equivalence between Θ and 
Δ. Then by item (3) of Theorem 1.4, f and g are equivalent up to an invertible linear 
transformation. �
Example 4.2. Take (V, Θ) as the 3-linear form in Example 2.3. Consider another 3-linear 
form (V, Δ) with Δ((x1, x2, x3), (y1, y2, y3), (z1, z2, z3)) = x1y1z1+8x2y2z2−x3y3z3. Note 
that Θ and Δ are both symmetric and their associated homogeneous polynomials are 
f(x, y, z) = x3 + y3 + z3 and g(x, y, z) = x3 + 8y3 − z3 respectively. It is easy to see that

(∂g
∂x

,
∂g

∂y
,
∂g

∂z

)
=

(∂f
∂x

,
∂f

∂y
,
∂f

∂z

)⎛
⎜⎝ 1 0 0

0 8 0
0 0 −1

⎞
⎟⎠ .

Hence f and g have the same Jacobian ideal. Then according to Theorem 1.4 and its 
proof, one can easily observe that g(x, y, z) = f(x, 2y, −z).
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Example 4.3. Let f(x, y, z) = 2x3 + 4x2y + 3xy2 + y3 + 3x2z + 2xyz + 3xz2 + y2z + z3

and g(x, y, z) = 2x3 − 2x2y− 3xy2 − y3 + 9x2z + 2xyz + 9xz2 + yz2 + 3z3. Then we have

(∂g
∂x

,
∂g

∂y
,
∂g

∂z

)
=

(∂f
∂x

,
∂f

∂y
,
∂f

∂z

)⎛
⎜⎝−7 −2 −6

6 1 6
8 2 7

⎞
⎟⎠ .

So f and g have the same Jacobian ideal. It follows by Theorem 1.5 that f and g are 
equivalent up to a change of variables. We compute the center

Z(f) =

⎧⎪⎨
⎪⎩a

⎛
⎜⎝ 1 1 0

0 0 0
−1 −1 0

⎞
⎟⎠ + b

⎛
⎜⎝ 0 −1 0

0 1 0
1 1 1

⎞
⎟⎠ + c

⎛
⎜⎝−1 0 −1

1 0 1
1 0 1

⎞
⎟⎠

∣∣∣∣∣a, b, c ∈ k
⎫⎪⎬
⎪⎭ ,

and find that the matrix A =

⎛
⎜⎝−7 −2 −6

6 1 6
8 2 7

⎞
⎟⎠ belongs to Z(f) by the following equality

⎛
⎜⎝−7 −2 −6

6 1 6
8 2 7

⎞
⎟⎠ = −

⎛
⎜⎝ 1 1 0

0 0 0
−1 −1 0

⎞
⎟⎠ +

⎛
⎜⎝ 0 −1 0

0 1 0
1 1 1

⎞
⎟⎠ + 6

⎛
⎜⎝−1 0 −1

1 0 1
1 0 1

⎞
⎟⎠ .

Take a cubic root B =

⎛
⎜⎝−3 −2 −2

2 1 2
4 2 3

⎞
⎟⎠ of A in Z(f) as what we have done in the 

proof of Theorem 1.4. Then g is equivalent to f under the invertible linear transformation 

which sends 

⎛
⎜⎝ x

y

z

⎞
⎟⎠ to B

⎛
⎜⎝ x

y

z

⎞
⎟⎠. In other words,

g(x, y, z) = f(−3x− 2y − 2z, 2x + y + 2z, 4x + 2y + 3z).
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